دفترچه راهنما:

راهنمای برنامه تسطیح به همراه کلیه جزئیات و دفترچه محاسبات تکمیل و راه اندازی شد،



  برای مشاهده این راهنما در قسمت لینک بر روی عبارت دفترچه راهنما کلیک فرمایید.







ایجاد شبکه منظم:

نقشه های توپوگرافی حاوی رقوم ارتفاعی زمین طبیعی در رئوس شبکه هاي منظم  و همچنین رقوم ارتفاعی پراکنده و یا نامنظم می باشند که برنامه تسطیح از این رقوم به منظور مبنای محاسبات خود  استفاده می کند. نسخه جدید برنامه تسطیح به منظور کنترل دقیق تر و استفاده بهینه  از این رقوم در مرحله ابتدایی اقدام به ساخت یک فایل شبکه بندی شده منظم یا Grid  فایل می نماید که می توان تا پایان پروژه از آن به عنوان فایل ورودی رقوم ارتفاعی زمین استفاده کرد.

هدف از شبکه بندی رسیدن از یک مجموعه نامنظم نقاط به یک مجموعه منظم است که در عملیات تسطیح کاربرد دارد.



تصویر بالا شمای ساده ای از ایجاد یک شبکه منظم از مجموعه ای از نقاط را در چهار مرحله نمایش می دهد.


شکل a- مشابه قرائت رقوم ارتفاعی در برنامه است
شکل b – یک شبکه منظم بر روی نقاط ورودی است
شکل c
محاسیه رقوم رئوس شبکه را نشان می دهد
شکل d  شبکه منظم ایجاد شده را نشان می دهد






روشهای واسطه یابی:

نسخه جدید برنامه جهت ایجاد فایل شبکه منظم رقوم ارتفاعی ( گرید فایل )  از روشهای زیر استفاده کند.

The Inverse Distance to a Power method

The Inverse Distance to a Power method is a weighted average interpolator, which can be either exact or smoothing. With Inverse Distance to a Power, data are weighted during interpolation, so that the influence of one point, relative to another, declines with distance from the grid node. Weighting is assigned to data through the use of a weighting power, which controls how the weighting factors drop off as distance from the grid node increases. The greater the weighting power, the less effect the points, far removed from the grid node, have during interpolation. As the power increases, the grid node value approaches the value of the nearest point. For a smaller power, the weights are more evenly distributed among the neighboring data points. Normally, Inverse Distance to a Power behaves as an exact interpolator. When calculating a grid node, the weights assigned to the data points are fractions, the sum of all the weights being equal to 1.0. When a particular observation is coincident with a grid node, the distance between that observation and the grid node is 0.0, that observation is given a weight of 1.0; all other observations are given weights of 0.0. Thus, the grid node is assigned the value of the coincident observation. The smoothing parameter is a  mechanism for buffering this behavior. When you assign a non-zero smoothing parameter, no point is given an overwhelming weight, meaning that no point is given a weighting factor equal to 1.0. One of the characteristics of Inverse Distance to a Power is the generation of "bull's-eyes" surrounding the observation position within the grid area. A smoothing parameter can be assigned during Inverse Distance to a Power to reduce the "bull's-eye" effect by smoothing the interpolated grid




Inverse Distance to a Power

در اين روش واسطه يابي بوسيله ميانگين وزني داده ها انجام ميشود يعني تاثير نسبي يك نقطه با دور شدن از شبكه كاهش مي يابد

 

The Kriging Method

Kriging is a geostatistical gridding method that has proven useful and popular in many fields. This method produces visually appealing maps from irregularly spaced data. Kriging attempts to express trends suggested in your data, so that, for example, high points might be connected along a ridge rather than isolated by bull's-eye type contours. Kriging is a very flexible gridding method. The Kriging defaults can be accepted to produce an accurate grid of your data, or Kriging can be custom-fit to a data set, by specifying the appropriate variogram model. Within SURFER, Kriging can be either an exact or a smoothing interpolator, depending on the user-specified parameters. It incorporates anisotropy and underlying trends in an efficient and natural manner.




Kriging

اين روش که روش پيش فرض نرم افزار می باشد جزو قابل اطمينان ترين گزينه ها بين روش هاي واسطه يابي است و در بسياري از زمينه ها كاربرد دارد


The Minimum Curvature Method

Minimum Curvature is widely used in the earth sciences. The interpolated surface generated by Minimum Curvature is analogous to a thin, linearly elastic plate passing through each of the data values, with a minimum amount of bending. Minimum Curvature generates the smoothest possible surface while attempting to honor your data as closely as possible. Minimum Curvature is not an exact interpolator, however. This means that your data are not always honored exactly



Minimum Curvature

روش كمترين انحنا بطور گسترده در علم زمين شناسي استفاده ميشود.سطحي كه با اين روش ساخته ميشود شبيه يک صفحه نازك كشسان است كه با انحناي كم از داده ها مي گذرد.


The Modified Shepard's Method

The Modified Shepard's Method uses an inverse distance weighted least squares method. As such, Modified Shepard's Method is similar to the Inverse Distance to a Power interpolator, but the use of local least squares eliminates or reduces the "bull's-eye" appearance of the generated contours. Modified Shepard's Method can be either an exact or a smoothing interpolator. The Surfer algorithm implements Franke and Nielson's (1980) Modified Quadratic Shepard's Method with a full sector search as described in Renka (1988).


Modified Shepard's Method

اين روش شبيه به روش Inverse Distance to a Power است با اين تفاوت كه معادلات كمترين مربعات حل شده، به صورت محلي است.


The Natural Neighbor Method

The Natural Neighbor method is quite popular in some fields. What is the Natural Neighbor interpolation? Consider a set of Thiessen polygons (the dual of a Delaunay triangulation). If a new point (target) were added to the data set, these Thiessen polygons would be modified. In fact, some of the polygons would shrink in size, while none would increase in size. The area associated with the target's Thiessen polygon that was taken from an existing polygon is called the "borrowed area." The Natural Neighbor interpolation algorithm uses a weighted average of the neighboring observations, where the weights are proportional to the "borrowed area". The Natural Neighbor method does not extrapolate contours beyond the convex hull of the data locations (i.e. the outline of the Thiessen polygons).



Natural Neighbor

اين روش از طريق ايجاد مثلث هاي متشابه و تصحيح آنها بعد از اضافه شدن داده جديد، كار مي كند.



The Nearest Neighbor Method

The Nearest Neighbor method assigns the value of the nearest point to each grid node. This method is useful when data are already evenly spaced, but need to be converted to a SURFER grid file. Alternatively, in cases where the data are close to being on a grid, with only a few missing values, this method is effective for filling in the holes in the data. Sometimes with nearly complete grids of data, there are areas of missing data that you want to exclude from the grid file. In this case, you can set the Search Ellipse to a certain value, so the areas of no data are assigned the blanking value in the grid file. By setting the search ellipse radii to values less than the distance between data values in your file, the blanking value is assigned at all grid nodes where data values do not exist



Nearest Neighbor

اين روش مقادير نزديكترين نقطه را به هر گره شبكه اختصاص مي دهد. کاربران قدیمی برنامه می توانند با استفاده از این روش فایل ورودی رقوم ارتفاعی زمین پروژه های قبلی خود را بدون هرگونه تغییر محسوسی به نسخه جدید منتقل و مورد استفاده و ارزیابی مجدد قرار دهند.

 


The Polynomial Regression Method

Polynomial Regression is used to define large-scale trends and patterns in your data. Polynomial Regression is not really an interpolator because it does not attempt to predict unknown Z values. There are several options you can use to define the type of trend surface



Polynomial Regression

اين روش براي تعريف روندها و خصوصيات بزرگ مقياس در داده ها است.

 


The Radial Basis Function Interpolation Method

Radial Basis Function interpolation is a diverse group of data interpolation methods. In terms of the ability to fit your data and produce a smooth surface, the multiquadric method is considered by many to be the best. All of the Radial Basis Function methods are exact interpolators, so they attempt to honor your data. You can introduce a smoothing factor to all the methods in an attempt to produce a smoother surface.




Radial Basis Function

تركيبي از روش هاي مختلف براي توليد سطح صاف است.

 

The Triangulation with Linear Interpolation Method

The Triangulation with Linear Interpolation method in SURFER uses the optimal Delaunay triangulation. This algorithm creates triangles by drawing lines between data points. The original points are connected in such a way that no triangle edges are intersected by other triangles. The result is a patchwork of triangular faces over the extent of the grid. This method is an exact interpolator. Each triangle defines a plane over the grid nodes lying within the triangle, with the tilt and elevation of the triangle determined by the three original data points defining the triangle. All grid nodes within a given triangle are defined by the triangular surface. Because the original data are used to define the triangles, the data are honored very closely. Triangulation with Linear Interpolation works best when your data are evenly distributed over the grid area. Data sets containing sparse areas result in distinct triangular facets on the map.




 Triangulation with Linear Interpolation

اين روش مثلث هاي بهينه اي را با وصل خطوطي بين نقاط داده ايجاد ميكند.

 

The Moving Average Method

The Moving Average method assigns values to grid nodes by averaging the data within the grid node's search ellipse. To use Moving Average, a search ellipse must be defined and the minimum number of data to use, specified. For each grid node, the neighboring data are identified by centering the search ellipse on the node. The output grid node value is set equal to the arithmetic average of the identified neighboring data. If there are fewer, than the specified minimum number of data within the neighborhood, the grid node is blanked


Moving Average

اين روش مقاديري را كه با ميانگين گيري از داده هاي داخل بيضوي نقاط شبكه بدست مي آيد به گره هاي شبكه اختصاص مي دهد.


The Data Metrics Methods

The collection of data metrics methods creates grids of information about the data on a node-by-node basis. The data metrics methods are not, in general, weighted average interpolators of the Z-values. For example, you can obtain information such as:

a) The number of data points used to interpolate each grid node.  If the number of data points used is fairly equal at each grid node, then the quality of the grid at each grid node can be interpreted.

b) The standard deviation, variance, coefficient of variation, and median absolute deviation of the data at each grid node. These are measures of the variability in space of the grid, which is important information for statistical analysis.

c) The distance to the nearest data point. For example, if the XY values of a data set are sampling locations, the Distance to the nearest data metric can be used to determine new sampling locations. A contour map of the distance to the nearest data point can quantify where higher sampling density may be desired



Data Metrics

در اين روش واسطه يابي به صورت نقطه به نقطه انجام مي گيرد.

 

The Local Polynomial Method

The Local Polynomial method assigns values to grid nodes by using a weighted least squares fit, with data within the grid node's search ellipse




Local Polynomial

در اين روش مقادير محاسبات به روش كمترين مربعات بر روي بيضوي به گره هاي شبكه اختصاص داده مي شود.

 







لیست کاربران:

لیست کاربران بروز رسانی شد، لازم به توضیح است که تعدادی از کاربران حقیقی مایل به انتشار مشخصات خود در سطح عموم نمی باشند و البته خواسته و حریم خصوصی ایشان برای ما محترم است.





انتشارنسخه جدید:

نسخه جدید برنامه تسطیح با امکانات و ابزار بسیار جدید منتشر شد.

VISUAL LEVEL 4.00

از امکانات جدید می توان به موارد عمده زیر اشاره کرد

- پذیرش نقاط منظم و پراکنده جهت ایجاد گریدهای منظم تسطیح
- شبیه سازی سطح سه بعدی زمین به دوازده روش حرفه ای
- نمایش سه بعدی زمین و صفحه مستوی تسطیح بطور همزمان
- ایجاد نقشه های متنوع تسطیح با حالت های جدید
- محاسبات و درج فاکتورهای مربوط به تسطیح لیزری در نقشه های
- رفع اشکالات گزارش شده توسط کاربران و افزایش سرعت پردازش






گزارش تخلف
بعدی